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CHAPTER 1 MATHEMATICAL PROCESSES

might use deductive reasoning to prove that an odd number times an even number is
an even number, based on assumptions and the rules of logic.

If you think of mathematics as a process, these two kinds of reasoning are fundamen-
tal to doing mathematics. There are two other types of reasoning that will be discussed in
later chapters: proportional reasoning (Chapter 7) and spatial reasoning (Chapters 10 and
11). We will now consider inductive reasoning and recognizing patterns in some detail.

Inductive Reasoning and Patterns

Inductive Reasoning. Mini-Investigation 1.4 sets the stage for understanding
inductive reasoning.

Talk about situations in MUsing Mathematical Reasoning
which you have used 2

similar type of reasoning.  What is the main characteristic of the type of reasoning used in the cartoon?

“Water boils down to nothing . . . snow boils down to nothing . . .

ice boils down to nothing . .. everything boils down to nothing”
Cartoon by Ed Fisher; © 1966, The Saturday Review, Inc, Reprinted by permission of
Ed Fisher. X : : ;

The preceding cartoon contains a somewhat humorous use of inductive reasoning, a
process we more generally describe as follows.

Description of Inductive Reasoni

from specific examples
e general conclusion drawn is calleda . .
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We can further describe inductive reasoning in the following way: After watching
an event that gives the same results several times in succession, an observer detects a
pattern or relationship and tentatively concludes that the event will always have the
same outcome. For example, suppose you move into a new apartment and see a
neighbor leave to walk her dog at 7 A.M. on Monday, again at 7 A.M. on Tuesday, and
so on for the rest of the week. Based on your observations, you form a generalization
and conclude, “My neighbor always leaves at about 7 A.M. to walk her dog.” We can
use this example to illustrate the steps in the inductive reasoning process.

Procedure for Using the Inductive Reasoning Process

. Check several exampfes ofa - You observe your neighbor as she
B jposyble relatlonshrp . leaves to walk her dog each day for
: : it aweekd
‘n ObseNe that'the relatfonshl'p' . You observe that each day she
- is true for every example you = leaves:at 7 A.M. to walk her dog.
i ichecked s o di st DE T R ; S
"'."Conclude that the' relatlonshlp " You conclude, "My neighbor always

s pmbabﬂy true for all'other leaves at 7 AM. to walk her dog.”
] example;s and state a : iy ; .
~ generalization.

To preview some ways in which we use the inductive reasoning process in this
book, let’s consider some mathematical situations. First, we double a number and
add 1 each time. Then we use inductive reasoning to form a generalization.

Examples: 2X3+1=7;2X6+1=13;2X7+1=15;
2X10+1=21

Generalization: 'When we double any number and add 1, the result is an odd
number.

Next, let’s triple a number and add 1 each time. Then we use inductive reasoning to
form a generalization.

Examples: 3 X4+ 1=13;3X6+1=193 X10+ 1 =31,

3 xX12+1 =37

Generalization: When we triple any number and add 1, the result is an odd
number.

‘We can also do some calculations with the assistance of technology. Then we use
inductive reasoning to form a general conclusion.

Examples: 'The screen shows several calculations carried out with a graphing
calculator.

2 X7

-5X8

-1 %11
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E.xample 12

Generalization: 'The product of a negative number and a positive number is
a negative number.

Although the generalization that doubling and adding 1 always gives an odd number
is true, we can produce another example, 3 X § + 1 = 16, which shows that the
generalization that tripling and adding 1 always gives an odd number is false! Thus
the use of inductive reasoning to form a generalization based on specific examples
cannot ensure that the generalization will hold true for all possible cases. An exam-
ple that disproves a generalization is of central importance to inductive reasoning
and is called a counterexample.

Description of Counterexample

A .couﬁl;e:re__'xahiple' is an éxém’pl_e'th_at shows a'g.enerall'zation to be false.

Example 1.2 further illustrates the need to look for a counterexample when you
use inductive reasoning, and it presents some geometric situations that may surprise
you!

Finding a Counterexample

Use inductive reasoning to form a generalization from the following examples:

Maximum
Number number
of chords | of regions

0 1
1 2
2 4

Look for a counterexample that might prove the generalization false.

|sorution
Generalization: The number of regions formed by drawing chords in a circle
doubles in each successive example.

Counterexamples: When we draw three chords in a circle, the maximum num-
ber of regions formed is seven, which is not the double of four regions.

IVOURTURN

Practice: Use inductive reasoning to form a generalization from the table on the
next page. Then draw a large, 3-inch-diameter circle with six points on it to com-
plete the last row of the table. Look for a counterexample that might prove the |
generalization false.

Reflect: Suppose you found that a generalization was correct for the first
100 examples. Does this prove the generalization true? Why or why not? ®
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Number of | Maximum
points on number
a the circle of regions

3 4
4 8
5 16
<} ?

In Example 1.2, you could have formed the generalization that the maximum
number of regions doubles each time and that the number of regions for six points
would therefore be 32. The counterexample that can be found for this generaliza-
tion shows that you must exercise care when using inductive reasoning. Clearly, you
don’t know whether a generalization formed by inductive reasoning is true or false.
If you look at a lot of examples and can’t find a counterexample for a generalization,
you may conclude that the generalization probably is true, but you can’t be sure
until you have proved the generalization.

Patterns. Mathematics is sometimes defined as the science of studying patterns.
When forming generalizations by inductive reasoning, you used patterns
discovered by looking at several examples. Sometimes, as when you were looking
for a pattern in the joining of midpoints of the sides of several quadrilaterals, the
order of the examples didn’t make any difference. At other times, as when you were
looking at the number of regions formed by connecting points on a circle, as in
Example 1.2, the order of the examples was crucial in helping you discover a
pattern. In this section, we work primarily with ordered patterns.

Sequences. A pattern involving an ordered arrangement of numbers, geometric
figures, letters, or other entities is called a sequence. The numbers, geometric
figures, or letters that make up a sequence are called the terms of the sequence.
The first four terms of a familiar numerical sequence are

L3 55 P il o B ®

Yo— ) ——

The pattern is obvious, and we can easily extend the sequence by giving the next
several terms. We can also look for patterns in sequences of geometric figures such
as

Discovering the pattern of rotation of the figure lets us anticipate the next several

terms in the sequence.
Numerical sequences may be classified according to the methods used to find

their terms. For example, a numerical sequence in which each term is obtained
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Example }.3

from the previous term by adding a fixed number is called an arithmetic
sequence. The fixed number is called the common difference for the sequence.
For example, the odd numbers form an arithmetic sequence with common
difference 2;0r1,3,5,7,9,11,....

A numeric sequence in which each term is obtained from the previous term by
multiplying by a fixed number is called a geometric sequence. The fixed number is
called the common ratio for the sequence. An example of a geometric sequence
with common ratio 2is 1, 2,4, 8, 16,32,....

The numbers of dots in the following triangle dot arrays are an example of a
sequence that is neither arithmetic nor geometric:

Note that for the dot array sequence, 2 is added to the first term to get the second;
3 is added to the second term to get the third; 4 is added to the third to get the
fourth; and so on. You observe a pattern of increases, and inductively conclude that
5 would be added to the fourth term to get the fifth term. Example 1.3 extends the
ideas of arithmetic and geometric sequences.

‘Extending Sequences

Determine whether the sequence is arithmetic, geometric, or neither. If one exists,
give the common difference or common ratio and then give the next three terms
in the sequence.

a. 1,3,9,27,81,...
b.2,5,8,11, 14, . ..
c. 1,4,9,16,25,...

ISOLUTION

a. We see a pattern: Each term is obtained by multiplying the term before it by
3, so the sequence is geometric, with common ratio 3. The next three terms
are 243, 729, and 2,187.

b. We see a pattern: Each term is obtained by adding 3 to the term before it, so
the sequence is arithmetic, with common difference 3. The next three terms
are 17, 20, and 23.

c. 'The pattern isn’t as obvious. Succeeding terms aren’t obtained by either adding
or multiplying preceding terms, so the sequence is neither arithmetic nor
geometric. Upon further investigation, we see that the next three terms are the
perfect squares 36, 49, and 64. :

lYOUR TURN

Practice: Determine whether the sequence is arithmetic, geometric, or neither. If
one exists, give the common difference or common ratio and then give the next
three terms in the sequence.
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a. 10, 20, 30, 40, .. .
b. 5,5, 10,10, 15, . ...
c. 1,4,16,64, ...

Reflect: Which type of sequence, arithmetic or geometric, increases faster?
Explain. =

To extend the ideas of arithmetic and geometric sequences, let’s consider 2
general way to represent their terms. For example, suppose that 4 is the first term of
an arithmetic sequence and that 4 is the common difference. We add the common
difference to the first term to get the second term, so we can represent the second
term as 4 + 4. Adding d again, we obtain the third term, 2 + d + d, or a + 2d.
Thus, the first several terms of an arithmetic sequence may be written as

a,a+da+2da+3da+4d,...

Using inductive reasoning, we note that, because the second term is 2 + 14, the
third term is # + 24, and the fourth term is 2 + 3d, the nth term of an arithmetic
sequence is 2 + (n — 1)d.

We may represent a geometric sequence in a general way by using a similar line
of reasoning. For example, suppose that # is the first term of the sequence and that »
is the common ratio. We multiply the common ratio by the first term to get the sec-
ond term, so we can represent the second term as a7 Multiplying by 7 again, we note
that the third term is 2 X 7 X 7, or ar%. Thus, the first several terms of a geometric
sequence may be written as

a4, ar, ar?, ard, ar’, ...
Using inductive reasoning, we note that as the second term is #(17), the third term is
ar®, and the fourth term is ar’, the nth term of a geometric sequence is ar" ! In
Exercise 77 on p. 38, you will use these ideas to find a specified term of a sequence
when you are given some terms and the common difference or ratio.

Often, as in the B.C. cartoon in Figure 1.5 showing the effect of inflation on
service charges, we associate a sequence of numbers with events, objects, or rela-
tionships between objects. In B.C.’ cartoon world, as inflation increases, will the
next change be 6 clams, or will it be 8 clams? When you use inductive reasoning
to discover a pattern in these numbers, you have discovered a regularity in a
“real-world” situation.

B. C.

WILL. INFLATIEN - ¥~ 1 Wis AFRAID OF THAT,
muﬁ&ugg‘lge ? WFo?WA'IEL'C . HERES YAUR TWO CLAME.
ot Es.

(7

et | &

FIGURE 1.5
The beginning of a sequence.

® 1970 Johnny Hart. Reprinted by permission of Johnny Hart and Creators Syndicate.
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Patterns in Real-World Data Tables. Real-world data are often recorded in a
table of values, which shows relationships between different data categories.
Often two types of patterns occur in such a table: column extension and row
relationship patterns. Consider the following table of values created from this picture
showing the way tree branches sometimes grow:

Level Number Number of Branches

1
1
2
3
5
8

[ & B L

This table of values can be extended by discovering a column extension pattern in
which each digit in the right-hand column is found by adding the two preceding
digits in the column. Using this column extension pattern, we determine that the
next digit in the column will be 5 + 8, or 13. The sequence shown in the right-hand
column of the table is known as a Fibonacci sequence. It was named after Leonardo
Pisano (also called Fibonacci; 1170-1230), who discovered it. In a Fibonacci
sequence, each term is the sum of the two preceding terms.

Now consider the data in the following table of values of predicted distances for
travel on a bicycle at a predetermined rate of speed. This table illustrates how it is
sometimes useful to also discover a row relationship pattern; in this case, in each row
the distance is always nine times the number of hours. Using this row relationship
pattern, we determine that in the next row of the table the time will be 5§ hours and
the distance will be 45 miles. Note that this table can also be extended by discover-
ing a column extension pattern. The numbers in the right-hand column form

i
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Time in Hours (t) Distance in Miles (d)
1 9
2 18
3 27
4 36
t ?

an arithmetic sequence with common difference 9. So, to extend the right-hand col-
umn, we simply add 9 and 36 to get 45.

Although column extension patterns are useful, using a row relationship pattern
is often more efficient. For example, to find the distance for a 30-hour bike travel
time, we would have to extend the right column in the table to include 26 more
numbers. However, once we have found the row relationship pattern, we can simply
multiply 30 by 9 to obtain the corresponding distance, 270 miles.

Example 1.4 gives further examples of real-world situations in which patterns
may be used to discover a relationship between the numbers in a table of values.

Problem Solving: Ramp Racer

A maker of miniature racing cars timed how far his prized car rolled down a ramp
in various lengths of time and recorded the following information:

Length of Time in Seconds (s) Distance in Feet (d)
1 1
2 4
3 9
4 16
5 7

Look for a pattern in the table and determine the distance the miniature car rolled
down the ramp in 8 seconds.

|soumo~

Feffs thinking: 1looked at the right-hand column and noticed that the
distances increased from 1 to 4, 4 to 9, and 9 to 16, or 3, 5, and 7 feet. So I
continued this column pattern and increased 16 by 9 to get 25, increased 25
by 11 to get 36, increased 36 by 13 to get 49, and increased 49 by 15 to get
64. The car traveled 64 feet down the ramp in 8 seconds.
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distance

d=12

Grenada’s thinking: 1looked for a relationship between the numbers in each
row. I noticed that 1 is 1 squared, 4 is 2 squared, 9 is 3 squared, and so on. So
for 8 seconds, I used the same pattern to find that the distance would be 8
squared, or 64. The car traveled 64 feet down the ramp in 8 seconds.

|~roun TURN

Practice: A health spa gave out the following table to show the weight loss per
week that a 166-pound person could expect from using the spa’s facilities:

Number of Weeks Weight (Ib.)
1 164
2 162
3 160
4 158

Look for a pattern in the table and determine the 166-pound person’s weight after
8 weeks of workouts and dieting at the spa.

Reflect: Which pattern, the column extension or the row relationship, do you
think is the most efficient way to solve the example problem? Why? =

A graphing calculator can also provide visual information about the pattern of
numbers in a table of values. For example, to solve the Ramp Racer problem in
Example 1.4, we can show the points that represent the pairs of numbers from the
table on a graph in which the x-axis represents the time (#) and the y-axis represents
the distance (d). We scale the x-axis in 1-second intervals and the y-axis in 10-foot
intervals and then enter the data to produce the screen in the margin.

The graph does not show a pattern of constant change. That is, when the
number of seconds increases by 1, the distance does not always increase by a con-
stant amount. By magnifying portions of the graph on the screen, we can see that
the change in the change in distance is constant and increases by 2 feet for each second
of time increase.

Patterns in Sequences of Number Sentences. Not only can you discover
patterns from sequences of numbers, you also can discover patterns from a
sequence of number sentences. For example, consider the following sequence of
number sentences involving sums of consecutive whole numbers:

l+2=-2—><—3—, or 3;

2
1+2+3=3)2(4, or 6;
1+2+3+4=4>2<5, or 10;
1+2+3+4+5=5>2{6, or 15;

1 +2+3+4+5+ - +n=2
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Study the pattern in these number sentences. Use inductive reasoning, observing
that the last number to be added is the key to calculating the sum. If you multiply
this last number by the number immediately following it and then divide this prod-
uct by 2, you get the sum. Exercise 80, p. 38, asks you to look for a pattern in
another sequence of number sentences.

Deductive Reasoning

We now consider a type of mathematical reasoning, called deductive reasoning,
that is used in drawing logical conclusions and in presenting convincing
arguments or proofs. This section will focus on the following aspects of deduc-
tive reasoning:

g understanding statements and negations;

® understanding conditional (if-then) statements and deciding when they
are true;

® using rules of logic—affirming the hypothesis and denying the
conclusion;

® writing and analyzing converse, inverse, and contrapositive
statements; and

m understanding and using conjunctions, disjunctions, and biconditional
statements.

Statements and Negations. A basic part of deductive reasoning involves the
use of statements. Sometimes people think statements and sentences are the
same. But we will make a distinction between them. Consider the following
sentences:

a. x+y=10

b. 3(x +y =3x+ 3.

c. George Washington was our 5th president.
d. George Washington was our st president.
e. The product of two numbers is odd.

Although (a)—(e) are all sentences, mathematicians would classify only sentences
(b), (), and (d) as statements. A statement is a sentence that can be deter-
mined to be true or false. Sentence (a) fails to achieve this because we do not
know the values associated with x and y. Sentence (e) fails to be a statement
because we do not know what the two numbers are. This suggests the following
definition:

Definition of a Statement

i A statement f_s:'_";-_a':.sént_.ér-u;:é thatls 'gi't'hé'f t__fqé.of false but not both.

The negation of a statement is a statement that has the opposite truth value of the
given statement. This can be expressed in the following way.
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Definition of a Negatmn

_ The negatlon ofa statementp is the statement notp (denoted p) lfp is '_ :
true, then pis false Afpi s false, then Np is true

The following are examples of statements and their negations.

r: The average of 2, 3, and 4 is 3.

~7: The average of 2, 3, and 4 is not 3.

54 =16

~5: 4 # 16

t: Jennifer Aniston was once married to Brad Pitt.

~t: Jennifer Aniston never married to Brad Pitt. |

Example 1.5 illustrates the difference between sentences and statements.

' Example Analyzing Statements and Negations

Determine if the following sentences are statements. If so, form their negations. If
not, say no negation exists.

a. 'The sum of two even numbers is even.
b. The sum of two odd numbers is odd.
¢. The square of a number is greater than 10.
! d. A parallelogram has four sides.
Is
a.
b.
C.

SOLUTION

The sum of two even numbers is not even (or is odd).
The sum of two odd numbers is not odd (or is even).
No negation exists.

d. A parallelogram does not have four sides.

! | Your TurN
Practice: Write a false statement and its negation. Is the negation true or false?
Explain.

Reflect: Suppose a given statement is true. Is the negation of its negation true
or false? Explain. =

Conditional Statements. A particular type of statement that is used in deductive
reasoning is an “if-then” statement. Mini-Investigation 1.5 illustrates this type of
statement.

In mathematics, statements in #f~then form are called conditional state-
ments. The if part of a conditional statement is called the hypothesis, and the
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Write an if-then statement w Using Mathematical Reasoning
about one of your favorite

products. What statement in the form If..., then.... cqﬁld you write about the products _
in the following advertisement? : |

pi—— g LT

_ fa/& /fﬁﬂ /ﬁd’[;ﬂay/

then part is called the conclusion. These ideas are illustrated in the following
statement:

Hypothesis Conclusion

If you wear Super Shoes, then you will play like a champior;.

Example 1.6 shows how to decide whether a conditional statement is true or false.

Example n Analyzing Conditional Statements

Suppose that your basketball coach made the following conditional statement:
If you play well in practice, then you will start in tOMOITOW's game.

In which of the following cases would you feel that you were being treated unfairly
and that the coach didn’t tell the truth?
Case 1:  You play well in practice (hypothesis true).
You start the game (conclusion true).
Case 2:  You play well in practice (hypothesis true).
You do not start the game (conclusion false).
Case 3:  You do not play well in practice (hypothesis false).
You start the game (conclusion true).
Case 4:  You do not play well in practice (hypothesis false).
You do not start the game (conclusion false).

|soLution
Case 2 is the only instance in which the coach did not tell the truth.
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| Your TurN

Practice: Suppose that a friend made the following conditional statement:
If I go on the trip, then I will bring you back a T-shirt.
Describe the conditions under which your friend would not have told the truth.

Reflect: Explain why the coach’s statement in the example problem is true in
cases 1,3,and 4. ®

In Example 1.6, you may have discovered the following procedure for deciding
whether a conditional statement is true or false.

Procedure for Dccrdmg Whether a Condltronal Statement Is True or False

1 Decude whether the hypothesls.and the conclusron are true or false
2 Use the followlng to' decrde if the. statement is true or false

e :-a " When both the hypothesls and conclusron are true the condrtronal .
' :.;_statement is true.
. When the hypothesr

L true and"the_ c’oncluslon is false,_ the_condl-' i
tional statement is: fals e 2 - i
.-_.'ZWhen the hypothesrs is ;'false ancl the conc!usmn is true the cond;- o
.., tional statementis true. - el
. d. When both the hypothes:s and conclusron are false the condltlonal
i statement is true ' S S

Truth Table for Conditional Statements. We can summarize the information
above in a different way using a truth table. In doing so, we will use the following
definition of a conditional statement.

Definition of a Conditional Statement

A statement that can be wntten in the form Nif. then “iscalled a
: -:condlhonal statement. Condltlonal statements are denoted symbolrcally by
wrrtmgp—*q : oy A e T ;

Suppose we define p and ¢ of a conditional statement in the following way:

p: U.S. Women’s soccer team scores at least two goals
¢: U.S. Women’s soccer team wins the match

i Now consider the following conditional statement,

If the U.S. Women’s soccer team scores at least two goals, then they will win.

P q P—q

T T T which can be represented symbolically by p — ¢ (read “p implies 4”). The truth table
T = F in the margin can be created.

e T T The only time the statement p — g is considered false is whenp is true and ¢ is
g . T false. In our case this would mean that the soccer team scored at least 2 goals but did

not win the match. Although it may seem strange, logicians have decided that if the
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hypothesis (p) of a statement is false, then the conditional statement p —> ¢ is con-
sidered true regardless of whether g is true or false.

Rules of Logic. We now consider two rules of logic that are frequently used in
deductive reasoning. Let’s first look at logic rule A, which is used when both a
conditional statement and its hypothesis are true.

Logic Rule A
o i g ) p q
«If p, then ¢ (true) —— If Lee’s score is higher than 94, then he will get an A.

o piis true ———————>» Lee’s score is higher than 94.

. Therefore gis true. —+—» Lee gotan A.

The letters p and ¢ in the rule represent the hypothesis and conclusion, respectively.
Logic rule A allows you to conclude that the conclusion is true. Logic rule A is
sometimes called affirming the hypothesis because it is used when the given
hypothesis is true. This form of deductive reasoning is also called modus ponens.
Logic rule B is used when a conditional statement is true and its conclusion is

false.

Logic Rule B

e 4 . 4
+If p, then g (true) ——» If Dana stays home, then she will miss her class.

_? qlsfalse —~—-————+ Dana did not miss her class.

. Thérefqré pis false ——> Dana did not stay home.

Logic rule B allows you to conclude that the hypothesis is false. Logic rule B is
sometimes called denying the conclusion because it is used when the given con-
clusion is false. This form of deductive reasoning is also called modus tollens.
Example 1.7 provides additional insight into the logic rules A and B.

Using Rules of Logic

What conclusion can be drawn from the following conditional statements?
a. If today is Saturday, then we play the big game.
We do not play the big game.

b. If all sides of a quadrilateral are the same length, then the quadrilateral is a

rhombus.
All sides of square ABCD are the same length.

Identify which rule of logic is used for each.




